Exercises

Siginificant Figures Exercise

1. What is the correct number of significant figures in the following measurements?
a. $\quad 2.0004 \mathrm{~cm}$

5---- inclusive zeroes are significant
b. $\quad 300 . \mathrm{cm}$ (there is a deliberate point after the last zero)

3---When there's a decimal trailing zeros are significant.
c. $\quad 300 \mathrm{~m}$

1---No decimal, so trailing zeros are NOT significant.This can written as 3×10^{2}
d. There are about 6 billion people on earth.

1
e. $\quad 1.9900 \mathrm{ml}$

5
f. $\quad 2.00 \times 10^{4} \mathrm{~kg}$

3 (the exponent is not a significant number)
g. $\quad 0.00403 \mathrm{~g}$

3---this number can be written as 4.03×10^{-3}
2. The mass of an empty can is 61 ± 1 grams. Then 30 ± 1 grams of water are added to the can. What is the lowest possible total mass for the can and water? The highest?

It can be anywhere from 89 to 93 g , so the sum is $91 \pm 2 \mathrm{~g}$. If you were subtracting, the uncertainties would also be additive.
3. A student observed that the temperature of 100.0 ml of water with a known density of $1.0 \mathrm{~g} / \mathrm{ml}$ increased from $10.5^{\circ} \mathrm{C}$ to $22.8^{\circ} \mathrm{C}$. Express the amount of heat absorbed by the water in kJ with the correct number of significant figures. Use $c=4.19 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$.
$5.15 \mathrm{X10}{ }^{3} \mathrm{~J}=5.15 \mathrm{~kJ}$
4. A gas sample contains 1000.233 moles of He and 0.35 moles of H_{2}. What is the total number of moles of gas in the sample, expressed with the correct number of sig- figs?
1000.58 g. Here we are only adding. See rule 4 in the stencil.
5. $\quad \mathrm{H}_{2}$ with a molar mass of $2(1.00797) \mathrm{g} /$ mole consumes 8.0 grams of sodium, according to the following reaction:
$2 \mathrm{Na}(\mathrm{s}) \quad+\quad \mathrm{H}_{2(\mathrm{~g})} \quad \rightarrow \quad 2 \mathrm{NaH}_{(\mathrm{s})}$
How many grams of sodium hydride, NaH will be produced? Express with the correct number of significant figures.
$8.0 \mathrm{~g} / 23.0 \mathrm{~g} / \mathrm{mole}=8 / 23$ moles of Na
Ratio is 2 : 2 or 1 : 1 so we get $8 / 23$ moles of NaH .
$(8 / 23) * 24.01 \mathrm{~g} / \mathrm{mole}=8.4 \mathrm{~g}$ of $\mathrm{NaH}(2 \mathrm{SF}$ due to NaH$)$
6. In a lab, measurements for the height of a tube ranged from 5.5 cm to 6.8 cm . The least accurate concentrations of the solutions used was 0.0010 M . Assuming that the value for K (an equilibrium constant) should have been expressed with just as many significant figures as in the above numbers, how should Peter have expressed the average of the following 4 values for K ?
96.37754
87.05914
126.1661
230.3015

The average of those experimentally derived numbers is 134.9761, but it's derived from measurements with only 2 SF , so the answer is $\mathrm{K}=1.3 \mathrm{X} 10^{2}$

